58 research outputs found

    Sex-Related Differences in Lactotroph Tumor Aggressiveness Are Associated With a Specific Gene-Expression Signature and Genome Instability

    Get PDF
    Sex-related differences have been reported in various cancers, in particular men with lactotroph tumors have a worse prognosis than women. While the underlying mechanism of this sexual dimorphism remains unclear, it has been suggested that a lower estrogen receptor alpha expression may drive the sex differences observed in aggressive and malignant lactotroph tumors that are resistant to dopamine agonists. Based on this observation, we aimed to explore the molecular importance of the estrogen pathway through a detailed analysis of the transcriptomic profile of lactotroph tumors from 20 men and 10 women. We undertook gene expression analysis of the selected lactotroph tumors following their pathological grading using the five-tiered classification. Chromosomic alterations were further determined in 13 tumors. Functional analysis showed that there were differences between tumors from men and women in gene signatures associated with cell morphology, cell growth, cell proliferation, development, and cell movement. Hundred-forty genes showed an increased or decreased expression with a minimum 2-fold change. A large subset of those genes belonged to the estrogen receptor signaling pathway, therefore confirming the potent role of this pathway in lactotroph tumor sex-associated aggressiveness. Genes belonging to the X chromosome, such as CTAG2, FGF13, and VEGF-D, were identified as appealing candidates with a sex-linked dysregulation in lactotroph tumors. Through our comparative genomic hybridization analyses (CGH), chromosomic gain, in particular chromosome 19p, was found only in tumors from men, while deletion of chromosome 11 was sex-independent, as it was found in most (5/6) of the aggressive and malignant tumors. Comparison of transcriptomic and CGH analysis revealed four genes (CRB3, FAM138F, MATK, and STAP2) located on gained regions of chromosome 19 and upregulated in lactotroph tumors from men. MATK and STAP2 are both implicated in cell growth and are reported to be associated with the estrogen signaling pathway. Our work confirms the proposed involvement of the estrogen signaling pathway in favoring the increased aggressiveness of lactotroph tumors in men. More importantly, we highlight a number of ER-related candidate genes and further identify a series of target molecules with sex-specific expression that could contribute to the aggressive behavior of lactotroph tumors in men

    EMT Inducers Catalyze Malignant Transformation of Mammary Epithelial Cells and Drive Tumorigenesis towards Claudin-Low Tumors in Transgenic Mice

    Get PDF
    The epithelial-mesenchymal transition (EMT) is an embryonic transdifferentiation process consisting of conversion of polarized epithelial cells to motile mesenchymal ones. EMT–inducing transcription factors are aberrantly expressed in multiple tumor types and are known to favor the metastatic dissemination process. Supporting oncogenic activity within primary lesions, the TWIST and ZEB proteins can prevent cells from undergoing oncogene-induced senescence and apoptosis by abolishing both p53- and RB-dependent pathways. Here we show that they also downregulate PP2A phosphatase activity and efficiently cooperate with an oncogenic version of H-RAS in malignant transformation of human mammary epithelial cells. Thus, by down-regulating crucial tumor suppressor functions, EMT inducers make cells particularly prone to malignant conversion. Importantly, by analyzing transformed cells generated in vitro and by characterizing novel transgenic mouse models, we further demonstrate that cooperation between an EMT inducer and an active form of RAS is sufficient to trigger transformation of mammary epithelial cells into malignant cells exhibiting all the characteristic features of claudin-low tumors, including low expression of tight and adherens junction genes, EMT traits, and stem cell–like characteristics. Claudin-low tumors are believed to be the most primitive breast malignancies, having arisen through transformation of an early epithelial precursor with inherent stemness properties and metaplastic features. Challenging this prevailing view, we propose that these aggressive tumors arise from cells committed to luminal differentiation, through a process driven by EMT inducers and combining malignant transformation and transdifferentiation

    Capturing a Single Cell

    No full text
    International audienceA major problem encountered in genomic and proteomic studies arises from the heterogeneous nature of different tissue. Analysis of a pure cell population is essential for correlating relevant molecular signatures in diseased and disease-free cells. During the last 30 years this challenge has led to the development of different technologies able to isolate cells of interest. Laser capture microdissection (LCM) is the last available technology using the precision of a laser beam to isolate single cells from complex tissue. In this chapter we will review the different technologies available and some applications

    Detoxication enzyme inducers modify cytokine production in rat mixed glial cells

    No full text
    Pro-inflammatory cytokines, e.g. interleukin-1beta (IL-1beta), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNFalpha) as well as neurotoxic molecules such as nitric oxide (NO), that are produced and released by activated glial cells, play an important role in inflammation and oxidative stress occurring during Multiple Sclerosis (MS). Reduction of these processes could therefore be of therapeutic interest. Dimethylfumarate (DMF) and sulforaphane (SP) are well known for their detoxicating properties. Furthermore, they have anti-inflammatory effects as shown clinically by the treatment of inflammatory skin diseases. However, their detoxication and anti-inflammatory action on brain-derived cells is unknown. In the present study we have studied, within the same concentration range, the anti-inflammatory and detoxicating effects of DMF and SP on the production and release of mediators of inflammation and detoxication from lipopolysaccharide (LPS) activated primary co-cultures of rat microglial and astroglial cells. DMF and SP attenuated the LPS-induced production and release of TNFalpha, IL-1beta, IL-6 and NO. In addition, DMF and SP increase both mRNA level and activity of NAD(P)H:quinone reductase (NQO-1), a detoxication enzyme, as well as the cellular glutathione content. We conclude that DMF or SP simultaneously can (1) reduce mediators of inflammation and (2) enhance detoxication enzymes in LPS stimulated co-cultures of astroglial and microglial cells. This double-sided effect could potentially be of therapeutic interest

    Gene expression profiling in brain following acute systemic hypertonicity: novel genes possibly involved in osmoadaptation

    No full text
    In brain osmoprotective genes known to be involved in cellular osmoadaptation to hypertonicity, as well as the related transcription factor tonicity-responsive enhancer binding protein (TonEBP) are only expressed in some cell subsets. In the search for other genes possibly involved in osmoadaptation of brain cells we have analyzed, through microarray, the transcriptional profile of forebrain from rats subjected to 45 min, 90 min, and 6 h systemic hypertonicity. Microarray data were validated by quantitative real-time PCR. Around 23 000 genes gave a reliable hybridization signal. The number of genes showing a higher expression increased from around 15 (45 min) up to nearly 200 (6 h). Among about 30 immediate early genes (IEGs) encoding transcription factors, only Atf3, Verge, and Klf4 showed a rapid increased expression. TonEBP-mRNA tissue level and TonEBP-mRNA labeling in neurons remained unchanged whereas TonEBP labeling was rapidly increased in neurons. Sodium-dependent neutral amino acid transporter-2 (SNAT2) encoded by gene Slc38a2 showed a delayed increased expression. The rapid tonicity-induced activation of Atf3, Verge, and Klf4 may regulate genes involved in osmoadaptation. Nfat5 encoding TonEBP is not an IEG and the early tonicity-induced expression of TonEBP in neurons may result from translational activation. Increased expression of sodium-dependent neutral amino-acid transporter 2 may lead to the cellular accumulation of amino acids for adaptation to hypertonicity.close91

    Expression of estrogen receptor alpha is associated with prolactin pituitary tumor prognosis and supports the sex-related difference in tumor growth.

    No full text
    CONTEXT: A sex difference in the progression of prolactin (PRL) tumors has been disputed for years. OBJECTIVE: To compare tumor characteristics and postoperative clinical course between men and women, and correlate data with estrogen receptor alpha (ERα (ESR1)) expression status. DESIGN, PATIENTS, AND METHODS: Eighty-nine patients (59 women and 30 men) operated on for a prolactinoma and followed for at least 5 years were selected. Tumors were classified into five grades according to their size, invasion, and proliferation characteristics. The ERα expression was detected by immunohistochemistry and a score (0-12) calculated as the product of the percentage of positive nuclei and the staining intensity. RESULTS: We found a significant preponderance of high-grade tumors among men and a lower surgical cure rate in men (23%) than in women (71%). Patients resistant to medical treatment were mainly men (7/8), six of whom showed tumor progression despite postoperative medical treatment, which led to multiple therapies and eventually death in three. The median score for ERα expression was 1 in men (range, 0-8) and 8 in women (range, 0-12) (P<0.0001). The expression of ERα was inversely correlated with tumor size (r=-0.59; P<0.0001) and proliferative activity. All dopamine agonist-resistant tumors and all grade 2b (invasive and proliferative) tumors (from ten men and four women) were characterized by low ERα expression. CONCLUSIONS: PRL tumors in men are characterized by lower ERα expression, which is related to higher tumor grades, resistance to treatment, and an overall worse prognosis

    Clinical, pathological and molecular factors of aggressiveness in lactotroph tumours.

    No full text
    The behaviour of lactotroph tumours varies between benign tumours, those cured by treatment, and that of aggressive tumours, and carcinomas with metastasis. Identification of clinical, pathological and molecular factors is essential for the early identification of patients that may have such aggressive tumours. Plasma prolactin levels and tumour size and invasion, per se, are not prognostic factors. However, tumours appearing at a young age ( 2) are correlated to invasion and proliferation, but, taken alone, their prognostic value is debatable. Based on a 5-tiered clinicopathological classification, and taking into account invasion and proliferation, a grade 2b (aggressive) lactotroph tumour has a 20× risk of progression compared to a grade 1a (benign) tumour. Moreover, lactotroph tumours are the second-most frequent aggressive and malignant tumour. Other factors, such as the expression of growth factors (vascular endothelial growth factor [VEGF] and epidermal growth factor [EGF]), the genes regulating invasion, differentiation and proliferation, adhesion molecules (E-cadherin), matrix metalloproteinase 9, and chromosome abnormalities (chromosomes 11, 19, and 1), have also been correlated with aggressiveness. Currently, clinical signs, a prognostic classification, and molecular and genetic markers may all help the clinician in the early identification of aggressive lactotroph tumours and enable stratification of their management

    Interleukin-1β and interleukin-1 receptor antagonist appear in grey matter additionally to white matter lesions during experimental multiple sclerosis

    Get PDF
    BACKGROUND: Multiple sclerosis (MS) has been mainly attributed to white matter (WM) pathology. However, recent evidence indicated the presence of grey matter (GM) lesions. One of the principal mediators of inflammatory processes is interleukin-1β (IL-1β), which is known to play a role in MS pathogenesis. It is unknown whether IL-1β is solely present in WM or also in GM lesions. Using an experimental MS model, we questioned whether IL-1β and the IL-1 receptor antagonist (IL-1ra) are present in GM in addition to affected WM regions. METHODS: The expression of IL-1β and IL-1ra in chronic-relapsing EAE (cr-EAE) rats was examined using in situ hybridization, immunohistochemistry and real-time PCR. Rats were sacrificed at the peak of the first disease phase, the trough of the remission phase, and at the peak of the relapse. Histopathological characteristics of CNS lesions were studied using immunohistochemistry for PLP, CD68 and CD3 and Oil-Red O histochemistry. RESULTS: IL-1β and IL-ra expression appears to a similar extent in affected GM and WM regions in the brain and spinal cord of cr-EAE rats, particularly in perivascular and periventricular locations. IL-1β and IL-1ra expression was dedicated to macrophages and/or activated microglial cells, at sites of starting demyelination. The time-dependent expression of IL-1β and IL-1ra revealed that within the spinal cord IL-1β and IL-1ra mRNA remained present throughout the disease, whereas in the brain their expression disappeared during the relapse. CONCLUSIONS: The appearance of IL-1β expressing cells in GM within the CNS during cr-EAE may explain the occurrence of several clinical deficits present in EAE and MS which cannot be attributed solely to the presence of IL-1β in WM. Endogenously produced IL-1ra seems not capable to counteract IL-1β-induced effects. We put forward that IL-1β may behold promise as a target to address GM, in addition to WM, related pathology in MS

    Deregulation of miR-183 and KIAA0101 in Aggressive and Malignant Pituitary Tumors

    Get PDF
    Changes in microRNAs (miRNAs) expression in many types of cancer suggest that they may be involved in crucial steps during tumor progression. Indeed, miRNAs deregulation has been described in pituitary tumorigenesis, but few studies have described their role in pituitary tumor progression toward aggressiveness and malignancy. To assess the role of miRNAs within the hierarchical cascade of events in prolactin (PRL) tumors during progression, we used an integrative genomic approach to associate clinical-pathological features, global miRNA expression, and transcriptomic profiles of the same human tumors. We describe the specific down-regulation of one principal miRNA, miR-183, in the 8 aggressive (A, grade 2b) compared to the 18 non-aggressive (NA, grades 1a, 2a) PRL tumors. We demonstrate that it acts as an anti-proliferative gene by directly targeting KIAA0101, which is involved in cell cycle activation and inhibition of p53-p21-mediated cell cycle arrest. Moreover, we show that miR-183 and KIAA0101 expression significantly correlate with the main markers of pituitary tumors aggressiveness, Ki-67 and p53. These results confirm the activation of proliferation in aggressive and malignant PRL tumors compared to non-aggressive ones. Importantly, these data also demonstrate the ability of such an integrative genomic strategy, applied in the same human tumors, to identify the molecular mechanisms responsible for tumoral progression even from a small cohort of patients

    Intestinal Epithelial Cells Adapt to Chronic Inflammation through Partial Genetic Reprogramming

    No full text
    Reactive oxygen species (ROS) are considered to be the main drivers of inflammatory bowel disease. We investigated whether this permanent insult compels intestinal stem cells to develop strategies to dampen the deleterious effects of ROS. As an adverse effect, this adaptation process may increase their tolerance to oncogenic insults and facilitate their neoplastic transformation. We submitted immortalized human colonic epithelial cells to either a mimic of chronic inflammation or to a chemical peroxide, analyzed how they adapted to stress, and addressed the biological relevance of these observations in databases. We demonstrated that cells adapt to chronic-inflammation-associated oxidative stress in vitro through a partial genetic reprogramming. Through a gene set enrichment analysis, we showed that this program is recurrently active in the intestinal mucosae of Crohn’s and ulcerative colitis disease patients and evolves alongside disease progression. Based on a previously reported characterization of intestinal stem and precursor cells using tracing experiments, we lastly confirmed the activation of the program in intestinal precursor cells during murine colorectal cancer development. This adaptive process is thus likely to play a role in the progression of Crohn’s and ulcerative disease, and potentially in the initiation of colorectal cancer
    corecore